Tuesday, September 16, 2008

spreading boards


picture: Mr Johari Jalinas

Spreading boards

All insects preserved with the wings spread uniformly are set and dried in this position on spreading boards or blocks

Monday, September 15, 2008

Double Mounts




Insects that are too small to be pinned directly on standard pins and yet should be preserved dry may be pinned as double mounts. This term refers to the insect’s being mounted on a minuten or card point, which in turn is mounted or attached to a standard insect pin . Minutens are available from supply houses in 10 and 15- mm lengths and in two or three thicknesses. They are finely pointed at one end, headless on the other, and generally of stainless steel. Double mounts are assembled by inserting the minuten into a small cube of soft, pithy material such as fine cork, balsa wood, fine-textured plastic, or polyporus, which is a pure white material obtained from a bracket fungus. Polyporus traditionally has been a favorite material, but it is expensive and difficult to obtain, especially in America.

Many entomologists prefer silicone rubber, obtained from plastics suppliers and made into plaques by pouring the polymerized material, a thick creamy liquid, into a flat- bottomed plastic container to a depth of about 2.5 mm and allowing it to solidify for several hours. It may then be lifted easily from the mold and cut with a sharp knife or razor blade into square strips and finally into cubes. With most materials, the minuten must be inserted point first, but with silicone rubber it may be inserted dull end first until it strikes the surface on which the cube is Iying, and it will be held firmly. Minutens should be handled with forceps; they are so small that even the unsharpened end can easily pierce a finger.

It is possible, and sometimes preferable, to mount an insect on a minuten before inserting the minuten into the mounting cube; however, it is most convenient to prepare a series of minuten mounts beforehand, already attached to standard No. 3 pins. To mount extremely small insects, such as tiny parasitic wasps, on minutens, pick up a droplet of cement with the prepared minuten and simply place the tip of the minuten with the cement on it between the base of the insect legs or on the right side of the thorax. In mounting an insect on a minuten, the pin need extend no more than barely through the insect. If the insect is lying on a glass surface when it is pierced with the minuten, a little extra pressure will curl the point of the minuten back into the insect and insure that the specimen will not come off the minuten.

Many entomologists prefer to mount insects on a minuten in a vertical position in a short strip of polyporus or silicone, with the minuten therefore parallel to the main pin. The insect lies sidewise in the finished mount, in an excellent position for examination under a microscope, and is less liable to damage in handling than it would be otherwise.

Card points are slender little triangles of stiff paper. They are pinned through the broad end with a No. 2 or 3 insect pin, and the insect is then glued to the point. Card points may be cut with scissors from a strip of paper; they should be no more than 12 mm long and 3 mm wide. However, a special punch for card points, obtainable from entomological supply houses, will make better, more uniform points. Card points should be made only from good quality paper, as good as or better than that used for data labels . If specimens are in good condition and are well prepared, they may reasonably be kept in museum collections for a long time, perhaps even for centuries. Much of the paper in common use does not have that kind of life expectancy; it becomes yellow and brittle with age. Paper made especially to last, such as that used for herbarium sheets in botanical collections, is highly recommended.

Specimen placement on the pin


Proper specimen placement on the pin. A) correct height and position. B) Specimen too low on pin. C) Specimen improperly tilted on pin.

Pin placement for mounting various types of insects


Diagram showing the proper pin placement for mounting various types of insects

Standard methods of pinning some of the commoner types of insects are as follows:

(1) Orthoptera—Pin through back of thorax to right of midline (A—B). For display purposes, one pair of wings may be spread as shown, but many orthopterists prefer to leave wings folded because of limited space in most large collections (see Beatty & Beatty 1963).

(2) Large Heteroptera—Pin through triangular scutellum to right of midline (C). Do not spread wings. In Reduviidae, Coreidae, and other slender forms, pin through back of prothorax to right of midline.

(3) Large Hymenoptera and Diptera—Pin through thorax between or a little behind base of forewings and to right of midline (D). So that no characters on body are obscured, legs should be pushed down and away from thorax, and wings turned upward or sidewise from body. Wings of most Diptera will flip upward if specimen is laid on its back before pinning and pressure is applied simultaneously to base of each wing with pair of blunt forceps. Wings should be straightened if possible so venation is clearly visible. Folded or crumpled wings sometimes can be straightened by gentle brushing with a camel’s hair brush dipped in 70 percent alcohol. For Hymenoptera wings, Peterson’s XA mixture (xylene and ethanol, equal parts by volume) is recommended.

(4) Large Coleoptera—Pin through right wing cover near base such that the pin exits through the metathorax (between the middle and hind legs) (E). Do not spread wings.

(5) Large Lepidoptera and Odonata—Pin through middle of thorax at thickest point (F) or just behind base of forewings (G)

Sunday, September 14, 2008

Preparing Dry Specimens for Mounting

Any dry insect that is to be pinned must be relaxed, that is, remoistened enough to soften so that it will not break when the pin is inserted or so that parts of the specimen may be rearranged or repositioned. Insects, especially Lepidoptera, that are to have their wings spread should be relaxed even if they have been killed for only a short time.

The muscles of Lepidoptera, once the stiffening of rigor mortis sets in, which occurs in a matter of minutes, are strong enough so that adjustment of the wings is difficult, but treatment in a relaxing chamber usually will make this procedure much easier. Eight hours in a relaxing chamber should suffice, but larger specimens may require 24 hours or more. Simply leaving specimens in a cyanide jar for awhile sometimes will relax them, but this method is not reliable

Mounting Specimens


Commonly used specimen mounting tools include a pinning block, forceps, pins, points, glue, and scisssors

Specimens are mounted so that they may be handled and examined with the greatest convenience and with the least possible damage. Well-mounted specimens enhance the value of a collection; their value for research may depend to a great extent on how well they are prepared.
Standardized methods have evolved over about 2 centuries in response both to the aesthetic sense of collectors and to the need for high quality research material.

Specimens to be prepared for a permanent collection may be fresh, that is, their body tissues not yet hardened or dried; or they may have been in temporary storage and must be specially treated before mounting. Dry specimens usually must be relaxed, and those preserved in liquid must be processed so that they will dry with minimal distortion or other damage.

Preservation for Molecular Studies

Systematists are increasing using molecular methods to study insect relationships, make identifications, and determine species limits. Some of these techniques, such as study of cuticular hydrocarbons, can be used on dried insects, even those stored in museum collections. However, many others require that specimens be treated so that DNA or other molecules are preserved. In general, specimens for molecular work should be collected in 95% or absolute (100%) ethanol (ethyl alcohol). It is best if specimens are thoroughly dehyrated by changing the alcohol at least a couple of time before the specimens are stored for any length of time. It is also advisable to keep specimens cold (frozen if possible). For more detailed information on specimen preservation for molecular work.